УДК 517.9

V. KADETS

UNDER A SUITABLE RENORMING EVERY NONREFLEXIVE BANACH SPACE HAS A FINITE SUBSET WITHOUT A STEINER POINT

V. Kadets. Under a suitable renorming every nonreflexive Banach space has a finite subset without a Steiner point, Mat. Stud. **36** (2011), 197–200.

We present a refinement of the recent Borodin's example of a finite set without a Steiner point. Namely, we show that under a suitable renorming such an example exists in every nonreflexive Banach space.

В. Кадец. Каждое нерефлексивное банахово пространство в подходящей перенормировке содержит конечное множество без точек Штейнера // Мат. Студії. – 2011. – Т.36, №2. – С.197–200.

Недавно П.А. Бородин построил пример конечного множества в банаховом пространстве, не имеющего точек Штейнера. Мы уточняем этот результат, показывая, что в подходящей эквивалентной перенормировке такие примеры есть в любом нерефлексивном банаховом пространстве.

For any finite collection $A = \{x_1, \ldots, x_n\}$ of (not necessarily distinct) elements of a Banach space X a Steiner point of A is every point $s \in X$ at which the function $x \mapsto \sum_{k=1}^{n} ||x - x_k||$ attains its minimum. Let us say that a Banach space X has the Steiner Point Property ($X \in$ StPP) if every finite collection $A \subset X$ possesses a Steiner point. By weak compactness argument every reflexive space has the StPP (see [1] for the corresponding references and for a short proof). The class of spaces with the Steiner Point Property contains also some non-reflexive spaces, like dual spaces, $L_1[0, 1]$, or more generally every Banach space that is 1-complemented in its bidual (see Theorem 1 below). The problem whether C[0, 1]in its original norm has the StPP remains open.

Recently, P. A. Borodin [1] presented the first example of a Banach space X that does not enjoy the StPP. This example is obtained by introducing an equivalent norm on C[0, 1]that "mixes" in a clever way the original norm of C[0, 1] with the L_1 -norm. In this short note we use the idea of Borodin's construction in order to show that in every nonreflexive Banach space X there is an equivalent norm $\|\cdot\|_b$ such that $(X, \|\cdot\|_b) \notin$ StPP.

In the sequel, if X is a Banach space then B_X stands for its closed unit ball, X^* and X^{**} stand for the dual and bidual spaces respectively. The norm closure of a subset $D \subset X$ we denote cl(D). We use the word "operator" for bounded linear operators. A Banach space X is said to be 1-complemented in its bidual if there is a linear projection $P: X^{**} \to X$ with ||P|| = 1. For standard facts about Banach spaces and properties of weak and weak* topologies we refer to [2], for more advanced Banach space theory results we refer to [3].

We start with a simple positive result.

²⁰¹⁰ Mathematics Subject Classification: 46B20.

Keywords: Steiner point of a finite set, Banach space, equivalent norm.

Theorem 1. Let X be a Banach space that is 1-complemented in its bidual. Then $X \in StPP$.

Proof. Let $A = \{x_1, \ldots, x_n\} \subset X$ be a finite collection. Denote $r = 2 \max_k ||x_k||$, $s = \inf_{x \in X} \sum_{k=1}^n ||x - x_k||$. Evidently, if ||x|| > r then $\sum_{k=1}^n ||x - x_k|| > \sum_{k=1}^n ||x_k|| \ge s$, so the infimum in the definition of s can be searched for $x \in rB_X$. Consider $F: x^{**} \mapsto \sum_{k=1}^n ||x^{**} - x_k||$ as a function on $rB_{X^{**}}$. For every $m \in \mathbb{N}$ the set $F^{-1}([0, s + 1/m]) \subset rB_{X^{**}}$ is weak^{*} compact and not empty, so there is an $x_0^{**} \in \bigcap_m F^{-1}([0, s + 1/m])$. Then $\sum_{k=1}^n ||x_0^{**} - x_k|| \le s$. Denote $P: X^{**} \to X$ a norm-1 projection. Then

$$\sum_{k=1}^{n} \|Px_0^{**} - x_k\| = \sum_{k=1}^{n} \|P(x_0^{**} - x_k)\| \le \sum_{k=1}^{n} \|x_0^{**} - x_k\| \le s,$$

so $Px_0^{**} \in X$ is a Steiner point of A.

The chain of lemmas below is a part of the main construction.

Lemma 1. Let X, Y be infinite-dimensional Banach spaces with X non-reflexive. Then there is an operator $T: X \to Y$ such that $cl(T(B_X)) \setminus T(X) \neq \emptyset$.

Proof. At first, the non-reflexivity of X implies the non-reflexivity of X^{*}. So, there is a sequence $(g_n) \subset B_{X^*}$ that has no weak limiting points. Fix a free ultrafilter \mathcal{U} on \mathbb{N} . (B_{X^*}, w^*) is w^* compact, hence there is a w^* limit g of (g_n) with respect to \mathcal{U} . Denote $f_k = \frac{g_n - g}{\|g_n - g\|}$. $(f_k) \subset B_{X^*}$ is a w^* -convergent to zero with respect to \mathcal{U} sequence of functionals that does not converge to zero weakly with respect to \mathcal{U} . Select a basic sequence $(e_k) \subset B_Y$ (see [3, Theorem 1.a.5]) and define T as follows:

$$Tx = \sum_{k=1}^{\infty} 2^{-k} f_k(x) e_k$$

Let $x^{**} \in B_{X^{**}}$ be such an element that $\langle x^{**}, f_k \rangle \not\rightarrow 0$ with respect to \mathcal{U} as $k \rightarrow \infty$. Then $T^{**}(x^{**}) = \sum_{k=1}^{\infty} 2^{-k} \langle x^{**}, f_k \rangle e_k$ does not belong to T(X). On the other hand, since B_X is w^* dense in $B_{X^{**}}$, for every $n \in \mathbb{N}$ there is $v_n \in B_X$ such that $\max\{|\langle x^{**}, f_k \rangle - f_k(v_n)|: 1 \le k \le n\} < \frac{1}{n}$. So,

$$||T^{**}(x^{**}) - Tv_n|| \le \sum_{k=1}^{\infty} 2^{-k} |\langle x^{**}, f_k \rangle - f_k(v_n)| < \frac{1}{n} + 2^{-n}.$$

This means that $T^{**}(x^{**}) \in cl(T(B_X)) \setminus T(X)$.

The following lemma is a well-known technical observation. We give just a sketch of proof.

Lemma 2. Let Y be a Banach space, $\{y_k\}_{k=1}^m$, $\{z_k\}_{k=1}^m$ be two linearly independent subsets of Y. Then there is an isomorphism $G: Y \to Y$ such that $Gz_k = y_k$ for all $k = 1, \ldots, m$.

Proof. For every $j \in \{1, \ldots, m\}$ denote $y_j^* \in Y^*$ a functional satisfying $y_j^*(y_k) = 0$ if $k \in \{1, \ldots, m\} \setminus \{j\}$ and $y_j^*(y_j) = 1$ (first define it on $\operatorname{Lin}\{y_k\}_{k=1}^m$ and then extend it to the whole Y by the Hahn-Banach theorem). Recall that $\{y_k^*\}_{k=1}^m$ is called a *biorthogonal system to* $\{y_k\}_{k=1}^m$. The same way we select a biorthogonal system $\{z_k^*\}_{k=1}^m$ to $\{z_k\}_{k=1}^m$. Denote $Y_m = \bigcap_{k=1}^m \ker y_k^*$, $Z_m = \bigcap_{k=1}^m \ker z_k^*$. Being two subspaces of the same finite codimension, Y_m and Z_m are isomorphic (one can show this for subspaces of codimension 1, and then proceed by induction

in codimension). Denote $W: Z_m \to Y_m$ the corresponding isomorphism. Now we define G as follows:

$$Gy = \sum_{j=1}^{m} z_j^*(y)y_j + W(y - \sum_{i=1}^{m} z_i^*(y)z_i).$$

The identity $Gz_k = y_k$ is evident, so G maps $\operatorname{Lin}\{z_k\}_{k=1}^m$ to $\operatorname{Lin}\{y_k\}_{k=1}^m$ bijectively. On Z_m (which is a complement to $\operatorname{Lin}\{z_k\}_{k=1}^m$) G equals W, so G maps bijectively a complement of $\operatorname{Lin}\{z_k\}_{k=1}^m$ to a complement of $\operatorname{Lin}\{y_k\}_{k=1}^m$. This implies the invertibility of G. \Box

Lemma 3. Under the conditions of Lemma 1, for every linearly independent collection $y_1, y_2, \ldots, y_m \in Y$ there is a bounded linear operator $V: X \to Y$ such that $y_1, y_2, \ldots, y_{m-1} \in V(X)$, $y_m \notin V(X)$, but the closure of $V(B_X)$ contains y_m .

Proof. Let T be the operator from Lemma 1. We select $z_m \in cl(T(B_X)) \setminus T(X)$ and a linearly independent collection $z_1, \ldots, z_{m-1} \in T(X)$. Denote $G: Y \to Y$ an isomorphism that maps each z_k to the corresponding y_k , $k = 1, \ldots, m$. Then $V = G \circ T$ is the operator we need. \Box

The following lemma is extracted from [1].

Lemma 4. There exists a linearly independent collection $\{y_1, y_2, y_3\} \subset L_1[0, 2]$ such that y_3 is the unique Steiner point of collection $\{y_1, y_2, 0\}$.

Proof. Take $y_1(t) = t$, $y_2(t) = t^2$, $y_3(t) = \min\{t, t^2\}$. Remark that for points $a, b, c \in \mathbb{R}$, $a \leq b \leq c$, the unique Steiner point of the collection $\{a, b, c\}$ is b. In particular, for every $t \in [0, 2]$ the unique Steiner point of the collection $\{y_1(t), y_2(t), 0\} \subset \mathbb{R}$ is $y_3(t)$. Consequently, for every $g \in L_1[0, 2]$ we have

$$\begin{aligned} \|0 - g\| + \|y_1 - g\| + \|y_2 - g\| &= \int_0^2 |0 - g(t)| + |y_1(t) - g(t)| + |y_2(t) - g(t)| dt \ge \\ &\ge \int_0^2 |0 - y_3(t)| + |y_1(t) - y_3(t)| + |y_2(t) - y_3(t)| dt = \|0 - y_3\| + \|y_1 - y_3\| + \|y_2 - y_3\|, \end{aligned}$$

and the equality is attained only if $g = y_3$ a.e.

Now we are ready for the main theorem.

Theorem 2. Let X be a nonreflexive Banach space. Then there is an equivalent norm $\|\cdot\|_b$ on X and there are points $x_1, x_2 \in X$ such that in $(X, \|\cdot\|_b)$ there is no Steiner point for the collection $\{x_1, x_2, 0\}$. In particular, $(X, \|\cdot\|_b) \notin$ StPP.

Proof. Denote $Y = L_1[0, 2]$ and let $\{y_1, y_2, y_3\} \subset Y$ be elements from Lemma 4. We apply Lemma 3 in order to get a bounded linear operator $V: X \to Y$ such that $y_1, y_2 \in V(X)$, $y_3 \notin V(X)$, but the closure of $V(B_X)$ contains y_m . We take arbitrary $x_1 \in V^{-1}y_1, x_2 \in V^{-1}y_2$, and select also a sequence $(z_n) \subset B_X$ such that $||Vz_n - y_3|| \to 0$. Now we pick M > 0 and n_0 such that for all $n > n_0$

$$M||Vz_n|| > ||z_n||, M||y_1 - Vz_n|| > ||x_1 - z_n||, \text{ and } M||y_2 - Vz_n|| > ||x_2 - z_n||.$$

Finally, introduce $\|\cdot\|_b$ as follows:

$$||x||_b = \max\{||x||, M||Vx||\}$$

Then, on the one hand, for every $x \in X$ we have

$$||x||_b + ||x_1 - x||_b + ||x_2 - x||_b \ge M(||Vx|| + ||y_1 - Vx|| + ||y_2 - Vx||) > > M(||y_3|| + ||y_1 - y_3|| + ||y_2 - y_3||)$$

(the last inequality is strong because $y_3 \neq Vx$). On the other hand, thanks to the choice of M,

$$\inf_{x \in X} \{ \|x\|_b + \|x_1 - x\|_b + \|x_2 - x\|_b \} \le \inf_{n > n_0} \{ \|z_n\|_b + \|x_1 - z_n\|_b + \|x_2 - z_n\|_b \} = M \inf_{n > n_0} \{ \|Vz_n\| + \|y_1 - Vz_n\| + \|y_2 - Vz_n\| \} = M(\|y_3\| + \|y_1 - y_3\| + \|y_2 - y_3\|).$$

So there is no $x \in X$ where $||x||_b + ||x_1 - x||_b + ||x_2 - x||_b$ attains its minimum.

Corollary 1. A Banach space is reflexive if and only if it possesses the Steiner Point Property in all equivalent norms.

REFERENCES

- Borodin P.A., An example of nonexistence of a Steiner point in a Banach space, Mat. Zametki, 87 (2010), №4, 514–518. (in Russian) English transl. in Math. Notes 87 (2010), №4, 485–488.
- Kadets V.M., A course in functional analysis, Karazin Kharkiv National University, 2006, 607p. (in Russian)
- Lindenstrauss J., Tzafriri L., Classical Banach spaces. I. Sequence spaces, Springer-Verlag, Berlin-New York, 1977, 188p.

Department of Mechanics and Mathematics, Kharkiv National University, vova1kadets@yahoo.com

Received 23.08.2011