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UNDER A SUITABLE RENORMING EVERY NONREFLEXIVE BANACH

SPACE HAS A FINITE SUBSET WITHOUT A STEINER POINT

V. Kadets. Under a suitable renorming every nonreflexive Banach space has a finite subset
without a Steiner point , Mat. Stud. 36 (2011), 197–200.

We present a refinement of the recent Borodin’s example of a finite set without a Steiner
point. Namely, we show that under a suitable renorming such an example exists in every
nonreflexive Banach space.

В. Кадец. Каждое нерефлексивное банахово пространство в подходящей перенормировке
содержит конечное множество без точек Штейнера // Мат. Студiї. – 2011. – Т.36, №2.
– C.197–200.

Недавно П.А. Бородин построил пример конечного множества в банаховом простран-
стве, не имеющего точек Штейнера. Мы уточняем этот результат, показывая, что в под-
ходящей эквивалентной перенормировке такие примеры есть в любом нерефлексивном
банаховом пространстве.

For any finite collection A = {x1, . . . , xn} of (not necessarily distinct) elements of a
Banach space X a Steiner point of A is every point s ∈ X at which the function x 7→∑n

k=1 ∥x − xk∥ attains its minimum. Let us say that a Banach space X has the Steiner
Point Property (X ∈ StPP) if every finite collection A ⊂ X possesses a Steiner point. By
weak compactness argument every reflexive space has the StPP (see [1] for the corresponding
references and for a short proof). The class of spaces with the Steiner Point Property contains
also some non-reflexive spaces, like dual spaces, L1[0, 1], or more generally every Banach space
that is 1-complemented in its bidual (see Theorem 1 below). The problem whether C[0, 1]
in its original norm has the StPP remains open.

Recently, P. A. Borodin [1] presented the first example of a Banach space X that does
not enjoy the StPP. This example is obtained by introducing an equivalent norm on C[0, 1]
that “mixes” in a clever way the original norm of C[0, 1] with the L1-norm. In this short note
we use the idea of Borodin’s construction in order to show that in every nonreflexive Banach
space X there is an equivalent norm ∥ · ∥b such that (X, ∥ · ∥b) /∈ StPP.

In the sequel, if X is a Banach space then BX stands for its closed unit ball, X∗ and
X∗∗ stand for the dual and bidual spaces respectively. The norm closure of a subset D ⊂ X
we denote cl(D). We use the word “operator” for bounded linear operators. A Banach space
X is said to be 1-complemented in its bidual if there is a linear projection P : X∗∗ → X
with ∥P∥ = 1. For standard facts about Banach spaces and properties of weak and weak*
topologies we refer to [2], for more advanced Banach space theory results we refer to [3].

We start with a simple positive result.
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Theorem 1. Let X be a Banach space that is 1-complemented in its bidual. Then X ∈ StPP.

Proof. Let A = {x1, . . . , xn} ⊂ X be a finite collection. Denote r = 2maxk ∥xk∥, s =
infx∈X

∑n
k=1 ∥x − xk∥. Evidently, if ∥x∥ > r then

∑n
k=1 ∥x − xk∥ >

∑n
k=1 ∥xk∥ ≥ s, so the

infimum in the definition of s can be searched for x ∈ rBX . Consider F : x∗∗ 7→
∑n

k=1 ∥x∗∗−
xk∥ as a function on rBX∗∗ . For every m ∈ N the set F−1([0, s + 1/m]) ⊂ rBX∗∗ is weak*
compact and not empty, so there is an x∗∗

0 ∈
∩

m F−1([0, s+1/m]). Then
∑n

k=1 ∥x∗∗
0 −xk∥ ≤ s.

Denote P : X∗∗ → X a norm-1 projection. Then

n∑
k=1

∥Px∗∗
0 − xk∥ =

n∑
k=1

∥P (x∗∗
0 − xk)∥ ≤

n∑
k=1

∥x∗∗
0 − xk∥ ≤ s,

so Px∗∗
0 ∈ X is a Steiner point of A.

The chain of lemmas below is a part of the main construction.

Lemma 1. Let X, Y be infinite-dimensional Banach spaces with X non-reflexive. Then there
is an operator T : X → Y such that cl(T (BX)) \ T (X) ̸= ∅.

Proof. At first, the non-reflexivity of X implies the non-reflexivity of X∗. So, there is a se-
quence (gn) ⊂ BX∗ that has no weak limiting points. Fix a free ultrafilter U on N. (BX∗ , w∗)
is w* compact, hence there is a w* limit g of (gn) with respect to U . Denote fk = gn−g

∥gn−g∥ .
(fk) ⊂ BX∗ is a w*-convergent to zero with respect to U sequence of functionals that does
not converge to zero weakly with respect to U . Select a basic sequence (ek) ⊂ BY (see [3,
Theorem 1.a.5]) and define T as follows:

Tx =
∞∑
k=1

2−kfk(x)ek.

Let x∗∗ ∈ BX∗∗ be such an element that ⟨x∗∗, fk⟩ 9 0 with respect to U as k → ∞. Then
T ∗∗(x∗∗) =

∑∞
k=1 2

−k⟨x∗∗, fk⟩ek does not belong to T (X). On the other hand, since BX is
w* dense in BX∗∗ , for every n ∈ N there is vn ∈ BX such that max{|⟨x∗∗, fk⟩ − fk(vn)| : 1 ≤
k ≤ n} < 1

n
. So,

∥T ∗∗(x∗∗)− Tvn∥ ≤
∞∑
k=1

2−k|⟨x∗∗, fk⟩ − fk(vn)| <
1

n
+ 2−n.

This means that T ∗∗(x∗∗) ∈ cl(T (BX)) \ T (X).

The following lemma is a well-known technical observation. We give just a sketch of proof.

Lemma 2. Let Y be a Banach space, {yk}mk=1, {zk}mk=1 be two linearly independent subsets
of Y . Then there is an isomorphism G : Y → Y such that Gzk = yk for all k = 1, . . . ,m.

Proof. For every j ∈ {1, . . . ,m} denote y∗j ∈ Y ∗ a functional satisfying y∗j (yk) = 0 if k ∈
{1, . . . ,m}\{j} and y∗j (yj) = 1 (first define it on Lin{yk}mk=1 and then extend it to the whole Y
by the Hahn-Banach theorem). Recall that {y∗k}mk=1 is called a biorthogonal system to {yk}mk=1.
The same way we select a biorthogonal system {z∗k}mk=1 to {zk}mk=1. Denote Ym =

∩m
k=1 ker y

∗
k,

Zm =
∩m

k=1 ker z
∗
k. Being two subspaces of the same finite codimension, Ym and Zm are

isomorphic (one can show this for subspaces of codimension 1, and then proceed by induction
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in codimension). Denote W : Zm → Ym the corresponding isomorphism. Now we define G as
follows:

Gy =
m∑
j=1

z∗j (y)yj +W (y −
m∑
i=1

z∗i (y)zi).

The identity Gzk = yk is evident, so G maps Lin{zk}mk=1 to Lin{yk}mk=1 bijectively. On Zm

(which is a complement to Lin{zk}mk=1) G equals W , so G maps bijectively a complement of
Lin{zk}mk=1 to a complement of Lin{yk}mk=1. This implies the invertibility of G.

Lemma 3. Under the conditions of Lemma 1, for every linearly independent collection
y1, y2, . . . , ym ∈ Y there is a bounded linear operator V : X → Y such that y1, y2, . . . , ym−1 ∈
V (X), ym /∈ V (X), but the closure of V (BX) contains ym.

Proof. Let T be the operator from Lemma 1. We select zm ∈ cl(T (BX))\T (X) and a linearly
independent collection z1, . . . , zm−1 ∈ T (X). Denote G : Y → Y an isomorphism that maps
each zk to the corresponding yk, k = 1, . . . ,m. Then V = G ◦ T is the operator we need.

The following lemma is extracted from [1].

Lemma 4. There exists a linearly independent collection {y1, y2, y3} ⊂ L1[0, 2] such that y3
is the unique Steiner point of collection {y1, y2, 0}.

Proof. Take y1(t) = t, y2(t) = t2, y3(t) = min{t, t2}. Remark that for points a, b, c ∈ R,
a ≤ b ≤ c, the unique Steiner point of the collection {a, b, c} is b. In particular, for every
t ∈ [0, 2] the unique Steiner point of the collection {y1(t), y2(t), 0} ⊂ R is y3(t). Consequently,
for every g ∈ L1[0, 2] we have

∥0− g∥+ ∥y1 − g∥+ ∥y2 − g∥ =

∫ 2

0

|0− g(t)|+ |y1(t)− g(t)|+ |y2(t)− g(t)|dt ≥

≥
∫ 2

0

|0− y3(t)|+ |y1(t)− y3(t)|+ |y2(t)− y3(t)|dt = ∥0− y3∥+ ∥y1 − y3∥+ ∥y2 − y3∥,

and the equality is attained only if g = y3 a.e.

Now we are ready for the main theorem.

Theorem 2. Let X be a nonreflexive Banach space. Then there is an equivalent norm ∥ · ∥b
on X and there are points x1, x2 ∈ X such that in (X, ∥ · ∥b) there is no Steiner point for the
collection {x1, x2, 0}. In particular, (X, ∥ · ∥b) /∈ StPP.

Proof. Denote Y = L1[0, 2] and let {y1, y2, y3} ⊂ Y be elements from Lemma 4. We apply
Lemma 3 in order to get a bounded linear operator V : X → Y such that y1, y2 ∈ V (X),
y3 /∈ V (X), but the closure of V (BX) contains ym. We take arbitrary x1 ∈ V −1y1, x2 ∈ V −1y2,
and select also a sequence (zn) ⊂ BX such that ∥V zn − y3∥ → 0. Now we pick M > 0 and
n0 such that for all n > n0

M∥V zn∥ > ∥zn∥,M∥y1 − V zn∥ > ∥x1 − zn∥, and M∥y2 − V zn∥ > ∥x2 − zn∥.

Finally, introduce ∥ · ∥b as follows:

∥x∥b = max{∥x∥,M∥V x∥}.
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Then, on the one hand, for every x ∈ X we have

∥x∥b + ∥x1 − x∥b + ∥x2 − x∥b ≥ M(∥V x∥+ ∥y1 − V x∥+ ∥y2 − V x∥) >
> M(∥y3∥+ ∥y1 − y3∥+ ∥y2 − y3∥)

(the last inequality is strong because y3 ̸= V x). On the other hand, thanks to the choice
of M ,

inf
x∈X

{∥x∥b + ∥x1 − x∥b + ∥x2 − x∥b} ≤ inf
n>n0

{∥zn∥b + ∥x1 − zn∥b + ∥x2 − zn∥b} =

= M inf
n>n0

{∥V zn∥+ ∥y1 − V zn∥+ ∥y2 − V zn∥} = M(∥y3∥+ ∥y1 − y3∥+ ∥y2 − y3∥).

So there is no x ∈ X where ∥x∥b + ∥x1 − x∥b + ∥x2 − x∥b attains its minimum.

Corollary 1. A Banach space is reflexive if and only if it possesses the Steiner Point Property
in all equivalent norms.

REFERENCES

1. Borodin P.A., An example of nonexistence of a Steiner point in a Banach space, Mat. Zametki, 87 (2010),
№4, 514–518. (in Russian) English transl. in Math. Notes 87 (2010), №4, 485–488.

2. Kadets V.M., A course in functional analysis, Karazin Kharkiv National University, 2006, 607p. (in
Russian)

3. Lindenstrauss J., Tzafriri L., Classical Banach spaces. I. Sequence spaces, Springer-Verlag, Berlin-New
York, 1977, 188p.

Department of Mechanics and Mathematics,
Kharkiv National University,
vova1kadets@yahoo.com

Received 23.08.2011


